
Design of a single-cycle RISC microarchitecture

Michal Štepanovský, Pavel Tvrdík

Czech Technical University in Prague
Faculty of Information Technology

https://courses.fit.cvut.cz/BIE-APS

Architectures of Computer Systems (BIE-APS)
Winter Semester 2022, Lecture 3

(Version Timestamp: 1. 11. 2022 16:47)

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 1 / 59

https://courses.fit.cvut.cz/BIE-APS

Computer architecture: von Neumann vs. Harvard

5 functional units: control unit, ALU, memory, input & output devices.
A computer architecture is universal, it is independent on solved problems.
It provides a mechanism to load a program into memory. The program
controls what the computer does with data and which problem it solves.
Instruction (program) and data memory:

I unified ⇒ von Neumann,
I separated ⇒ Harvard.

The main memory consists of cells of the same size that are sequentially
numbered/indexed, each cell has its address.
Instructions are stored in memory sequentially.
Control flow instructions change the Program Counter to other than
subsequent instruction.

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 2 / 59

The goal of this lecture I

Today’s computers have unified main memory and the advantage of
separated instruction and data memory is achieved by using a separated L1
data and L1 instruction cache memory.
Therefore, the goal of this lecture is

to design a single-cycle microarchitecture of a simple computer consisting of a
CPU and separated instruction and data memory.

A single-cycle microarchitecture is minimal in a sense that all instructions
are processed in a single clock cycle.
The next Lecture 4 will be devoted to a more realistic and more complex
pipelined microarchitecture.

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 3 / 59

Why RISC-V Architecture?

There is an increasing demand for custom processors to meet the power and
performance requirements of specific applications.
Widely used ISAs (x86, x86-64, ARM, etc.) are licensed intellectual
property (IP) of some companies. For example, if you wish to design an
ARM-compatible processor, you need to license it from Arm Ltd., the
owners of the ARM ISA IP.
RISC-V is a free and open ISA (no fees to use it).
RISC-V follows the RISC principles.
RISC-V is actually a family of ISAs.
The RISC-V ISA family is

I parameterized and
I extensible with custom-defined instructions.

Thus, RISC-V is suitable for the whole scale of computers, starting from
embedded systems up to high-performance servers.
Free RISC-V processor cores (microarchitectures) in VHDL/Verilog are
available!
RISC-V is simple enough to be used in computer architecture courses.

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 4 / 59

RISC-V ISA Family I

18

RISC-V

RVXLEN[I/E][EXTENSIONS]

XLEN: width of integer registers in bits (32 or 64, in the future 128).
I/E: Integer/Embedded (RV32E has only 16 registers).
EXTENSIONS:

I M: Multiplication and division instructions
I A: Atomic instructions
I C: Compressed instructions (i.e., shorter instructions)
I F: Single-Precision Floating-Point support
I D: Double-Precision Floating-Point support
I Q: Quad-Precision Floating-Point support
I Zicsr: Control and Status Register instructions
I Zifencei: Instruction-Fetch Fence instructions
I and others

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 5 / 59

RISC-V ISA Family II
Any RISC-V processor must implement the base integer ISA, which is a
predefined set of 40 basic integer instructions.
The differences between RV32I ISA and RV32E ISA:

I RV32I has 32 32-bit GPRs, whereas RV32E has only 16 32-bit GPRs.
RV64I is RISC-V ISA with 32 64-bit GPRs, its integer instructions are a
superset of the base integer ISA.
RV64E does not exist, it is not defined at the present time.
Integer GPRs of RV32I/RV64I are denoted by x0. . . x31.
Integer GPRs of RV32E are denoted by x0. . . x15.
Register x0 is always hardwired to zero.

Example
RV64IMAFDZicsr_Zifencei is a 64-bit ISA with many extensions, e.g.,
double-precision floating point instructions and fence instructions for
synchronization of multi-core computation.
RV32EC is a 32-bit ISA suitable for embedded systems supporting only base
integer instructions with the option to encode them to 16 bits where possible.

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 6 / 59

PicoRISC-V ISA

In the BIE-APS course, we will use the following subset of RV32I ISA, called
picoRISC-V ISA.

Definition (picoRISC-V ISA)
Instructions to read and write a value from/to the data memory: lw and sw.
Arithmetic and logic instructions: add, addi, sub, and, or, and slt.
Control flow instructions:

I Conditional branching instruction beq.
I Subroutine call instructions jal and jalr

Note
This small instruction set is sufficient for writing interesting programs.
The instructions jal and jalr include the functionality of unconditional
jump instructions: j (jump) and jr (jump register), and of the return from
a subroutine: ret (return), see Slide 35.

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 7 / 59

picoRISC-V ISA instructions in assembly language
Instruction Syntax Instruction Semantics
lw rd, imm11:0(rs1) rd ← Mem[[rs1] + imm11:0];
sw rs2, imm11:0(rs1) Mem[[rs1] + imm11:0] ← [rs2];
addi rd, rs1, imm11:0 rd ← [rs1] + imm11:0;
add rd, rs1, rs2 rd ← [rs1] + [rs2];
sub rd, rs1, rs2 rd ← [rs1] – [rs2];
and rd, rs1, rs2 rd ← [rs1] & [rs2];
or rd, rs1, rs2 rd ← [rs1] | [rs2];
slt rd, rs1, rs2 rd ← [rs1] < [rs2];
beq rs1, rs2, imm12:1 if [rs1] == [rs2] go to [PC]+{imm12:1,’0’};

else go to [PC]+4;
jal rd, imm20:1 rd ← [PC]+4;

go to [PC]+{imm20:1,’0’};
jalr rd, rs1, imm11:0 rd ← [PC]+4;

go to [rs1]+imm11:0;
rd = register destination, rs1(2) = register source1(2), imm = immediate op.
Each immediate operand imm is labeled with the range (immhigh:low) of bit positions
in the 32-bit immediate value being produced.
If low > 0, imm is zero-padded. This is explicitly indicated, e.g., {imm20:1,’0’}.
imm is always sign-extended to create a 32-bit operand.

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 8 / 59

RISC-V GPR names and recommended utilization

In assembly language, registers can be accessed by using their architectural name
(x0...x31) or by using their ABI1 name.
In BIE-APS, we will use both options how to specify the register.

Register ABI Name Description Saver
x0 zero Hard-wired zero —
x1 ra Return address Caller
x2 sp Stack pointer Callee
x3 gp Global pointer —
x4 tp Thread pointer —
x5–7 t0–2 Temporaries Caller
x8 s0/fp Saved register/frame pointer Callee
x9 s1 Saved register Callee
x10–11 a0–1 Function arguments/return values Caller
x12–17 a2–7 Function arguments Caller
x18–27 s2–11 Saved registers Callee
x28–31 t3–6 Temporaries Caller

1Application binary interface (ABI) is a low-level interface between two programs.
Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 9 / 59

Program Examples I

Summation of values in registers:

addi x1,x0,4 // x1 ← 4;
addi x2,x0,20 // x2 ← 20;
add x3,x1,x2 // x3 ← [x1]+[x2];

Incrementation of memory cell with address 12:

lw x1,12(x0) // x1 ← Mem[12];
addi x1,x1,1 // x1 ← [x1]+1;
sw x1,12(x0) // Mem[12] ← [x1];

Assignment conditioned by different register contents:

beq x1,x2,L1 // if [x1]==[x2] go to L1;
addi x2,x0,5 // x2 ← 5; (Assigned only if [x1] 6= [x2])
L1:

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 10 / 59

Program Examples II

Subroutine call (gcd = greatest common divisor):

int gcd (int n1, int n2){
while(n1!=n2){

if(n1 > n2)
n1 -= n2;

else
n2 -= n1;

}
return n1;

}

void main(){
register int n1 = 25;
register int n2 = 15;
gcd(n1, n2);

}

gcd:
beq a0,a1,done // Are we done?
slt t0,a0,a1 // t0 ← [a0]<[a1];
beq t0,x0,L // [a0]<[a1]?
sub a1,a1,a0 // a1 ← [a1]−[a0];
beq x0,x0,gcd // go to gcd;

L:sub a0,a0,a1 // a0 ← [a0]−[a1];
beq x0,x0,gcd // go to gcd;

done:
jalr x0,x1,0 // return;

main:
addi a0,x0,25 // a0 ← 25; (n1)
addi a1,x0,15 // a1 ← 15; (n2)
jal x1,gcd // Call gcd

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 11 / 59

Compilation and machine coding

int pow = 1;
int x = 0;
while(pow != 128)
{

pow = pow*2;
x = x + 1;

}

addi s0,x0,1
addi s1,x0,0
addi t0,x0,128
while:

beq s0,t0,done
slli s0,s0,1
addi s1,s1,1
j while

done:

00 10 04 13
00 00 04 93
08 00 02 93
00 54 08 63
00 14 14 13
00 14 84 93
ff 5f f0 6f

Program in C

Program in JSA

Machine code2

2Machine code in hexadecimal coding.
Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 12 / 59

Machine encoding of RV32I/picoRISC-V ISA instructions
At the machine code level, each instruction is encoded into 32b word using one
of 6 formats:

31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type
imm[31:12] rd opcode U-type

imm[20|10:1|11|19:12] rd opcode J-type

5-bit encoding of rs1, rs2, rd allows to encode 32 GPRs.
opcode = operation code, funct3,funct7 = extended opcode.
Bit 31 in I,S,B,U,J-type formats is the sign bit for extension of the
immediate operand to 32 bits.
That is why the mapping of the bits of the immediate operand into the
machine code is so complicated:
the msb is always bit 31 of the instruction word.

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 13 / 59

Encoding of immediate operands and branch instructions

Branching instructions (B,J-type) use the branching address that needs to
be (at least) multiple of 2 (i.e., the lsb of the branch target address must be
zero).
This is due to the requirement to support both 32 bit and 16 bit
(compressed) instructions.
A usual solution is to shift the immediate operand left by one bit in
hardware.
However, RISC-V ISA encodes this shift operation in instruction itself.
We will explain this solution on the next slide by comparing S-type and
B-type formats.

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 14 / 59

Encoding of immediate operands I
Comparison of S and B formats:

31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type

The only difference between the S-type and B-type formats is that the
B-type 12-bit immediate field encodes branch offsets in multiples of 2.
Therefore, imm[0] is not part of the instruction encoding, because it is
always 0, and thus, the instruction contains bits imm[12:1].
In order to minimize hardware cost, it is required that the most of the
immediate operand bits in the instruction stay at the same positions.
The first option would be to encode imm[12] instead of imm[0], i.e., in bit 7
of the instruction (inst[7]).
However, it is also required that the sign bit is encoded in bit 31 of the
instruction (inst[31]).
Thus, imm[12] has to be placed in inst[31]. And therefore, inst[11] is placed
at the original place of imm[0], i.e., inst[7].

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 15 / 59

Encoding of immediate operands II
Extracting S-immediate and B-immediate value from the instruction:

19

0

31 25 24 20 19 15 14 12 11 7 6 0

0

31 25 24 20 19 15 14 12 11 7 6 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-bit instruction:

Extracted 32-bit

immediate value:

Sel

Sel

32-bit instruction:

Extracted 32-bit

immediate value:

Conventional approach would use only 1 instruction type and HW shifting:

19

0

31 25 24 20 19 15 14 12 11 7 6 0

0

31 25 24 20 19 15 14 12 11 7 6 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-bit instruction:

Extracted 32-bit

immediate value:

Sel

Sel

32-bit instruction:

Extracted 32-bit

immediate value:

Shifting operation in HW (multiplication by 2) requires more multiplexors.
This is even more crucial when multiple instruction formats are required
(such as U-type with 20-bit imm operand).
The RISC-V imm. encoding adds just a negligible time to the program
compilation.

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 16 / 59

Encoding of immediate operands III
According to previous slides, there are 5 ways to construct immediate operands:
31 0

— inst[31] — inst[30:25] inst[24:21] inst[20] I-immediate

— inst[31] — inst[30:25] inst[11:8] inst[7] S-immediate

— inst[31] — inst[7] inst[30:25] inst[11:8] 0 B-immediate

inst[31] inst[30:20] inst[19:12] — 0 — U-immediate

— inst[31] — inst[19:12] inst[20] inst[30:25] inst[24:21] 0 J-immediate

The fields are labeled with the instruction bit positions used to construct
the value of the immediate operand.
The mapping of the bits of a immediate operands to the instruction 32-bit
word in all types of formats is chosen to maximize the mapping overlap.
For instance, bit 0 of the 32-bit immediate value may come from inst[20],
inst[7], or it is set to 0.
Bit inst[31] is always the msb used in sign-extension to 32-bit value.

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 17 / 59

Decoding of immediate operands

The instruction type (R-, I-, S-, B-, J-type) is encoded in bits inst[6:0],
called opcode.
Remaining bits inst[31:7] in I-, S-, B-, J-type are used to encode the
immediate operand.
However, the encoding of the immediate operand in the machine word is
quite diverse among those formats as we could just see.
Therefore, to extract and construct a 32-bit number out of this encoding is
rather complicated.
In our design, we will consider a special hardware decoding unit called
Immediate Decoder to construct a 32-bit immediate operand from the
instruction word.

inst[31:7] Immediate operand

where the control signal immControl is derived from the instruction format.
Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 18 / 59

Encoding of picoRISC-V instructions I
opcode is used to encode a specific instruction or a group of related instructions:

opcode Meaning for RV32I For our picoRISC-V
0110011 R-type add, sub, slt, or, and
0010011 I-type: ALU-imm addi
0000011 I-type: Memory load lw
0100011 S-type: Memory store sw
1100011 B-type: Branch beq
1101111 J-type: jal jal
1100111 I-type: jalr jalr

R-type instructions with opcode 0110011 are distinguished with funct7 and
funct3.

funtc7 funtc3 Instruction
0000000 000 add
0100000 000 sub
0000000 010 slt
0000000 110 or
0000000 111 and

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 19 / 59

Encoding of picoRISC-V instructions II

Instruction encoding of all picoRISC-V instructions:

31 27 26 25 24 20 19 15 14 12 11 7 6 0
imm[11:0] rs1 010 rd 0000011 lw (I)

imm[11:5] rs2 rs1 010 imm[4:0] 0100011 sw (S)
0000000 rs2 rs1 000 rd 0110011 add (R)
0100000 rs2 rs1 000 rd 0110011 sub (R)
0000000 rs2 rs1 010 rd 0110011 slt (R)
0000000 rs2 rs1 110 rd 0110011 or (R)
0000000 rs2 rs1 111 rd 0110011 and (R)

imm[11:0] rs1 000 rd 0010011 addi (I)
imm[12|10:5] rs2 rs1 000 imm[4:1|11] 1100011 beq (B)

imm[20|10:1|11|19:12] rd 1101111 jal (J)
imm[11:0] rs1 000 rd 1100111 jalr (I)

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 20 / 59

CPU building blocks (recap from BIE-SAP)

Instr.

Memory

A RD
32 32 5

GPR

Set

A1 RD1

A2 RD2

A3

WD3

WE3

5

5

32

32

CLK

32

Data

Memory

A RD

WD

WE
32

32

32

CLK

Write at the rising edge of CLK when WE = 1

Read after “enough time” for data propagation

Register

32 32

CLK
ALUControl

ZeroSrcA

SrcB ALUOutALU

4

0

1

Select

Multiplexor

2

32

Immediate operand extraction

25 Imm.

Decode

immControl

Arithmetic-Logic

Unit

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 21 / 59

Explanation of building blocks I
Register triggered (inputs are transferred to outputs) with a clock
positive edge. The register state is latched until the next clock
positive edge.

Multiplexer switches one of the inputs to the output on the basis
of the Select signal.

Extracting and building up an immediate operand from the in-
struction.

Instruction memory provides an instruction from address A to
port RD. Memory read is combinational.

2-port data memory. Port RD serves to read data (combina-
tional), port WD serves to write data. Data write needs the WE
control input on and is triggered with the positive clock edge
(CLK).
3-port GPR set of 32 32-bit registers. Inputs A1 and A2 address
read ports RD1 and RD2. Reg. reading is combinational. Write
port WD3 are addresses with input A3. Write into a register is
enabled with the WE3 control input on and is triggered with the
positive clock edge (CLK).

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 22 / 59

Paths

Thick (black) line: 32-bit data path (= 32 parallel wires).

Thin (black) line: Data path other than 32 bits.
Thin blue line: Control signal from the control unit.

Nongalvanic wire crossing.
Wire/path split (galvanic connection).

15:0 Selection of bits 15:0 from a data path.

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 23 / 59

Instruction lw format, syntax, and semantics

lw = load word from data memory into a register
Syntax: lw rd, imm11:0(rs1)
Semantics: rd ← Mem[[rs1] + imm11:0];
Encoding: iiii iiii iiii ssss s010 dddd d000 0011

The base address offset is encoded as the 12-bit immediate operand.

Example 1
lw x11,0x4(x0) = Load word from memory address 0x4 into reg. x11.

Hexadecimal code of lw x11,0x4(x0) in machine language: 0x00402583.

Note that in this lecture, the hexadecimal coding is prefixed with 0x.

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 24 / 59

Single-cycle CPU — implementation of instruction lw I

lw rd, imm11:0(rs1) rd ← Mem[[rs1] + imm11:0];
rs1 = base address register, imm = offset, rd = destination register.
31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode I-type

Instr.
Memory

A RD
19:15

SrcA

SrcB

ALUOut

PC

ALU

3

WriteData

PCn

Imm.
Decode

ImmOp

[rs1]

[rs2]

31:7

immControl

MemWriteALUControl

0

I-type

lw

Instr.

+

Data
Memory

A RD

WD

WE

GPR
Set

A1 RD1

A2 RD2

A3

WD3

WE3

ReadDataALUOut

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 25 / 59

Single-cycle CPU — implementation of instruction lw II

lw rd, imm11:0(rs1) rd ← Mem[[rs1] + imm11:0];
rs1 = base address register, imm = offset, rd = destination register.
31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode I-type

Instr.
Memory

A RD
19:15

SrcA

SrcB

ALUOut

PC

ALU

4

WriteData

PCn

Imm.
Decode

ImmOp

[rs1]

[rs2]

31:7

immControl

11:7

MemWriteALUControlRegWrite

01
I-type

lw

Instr.

+

Data
Memory

A RD

WD

WE

GPR
Set

A1 RD1

A2 RD2

A3

WD3

WE3

ReadDataALUOut

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 26 / 59

Single-cycle CPU — implementation of instruction lw III

lw rd, imm11:0(rs1) rd ← Mem[[rs1] + imm11:0];
rs1 = base address register, imm = offset, rd = destination register.
31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode I-type

Instr.
Memory

A RD
19:15

SrcA

SrcB

ALUOut

4

PC

+

ALU

5

WriteData

PCn

Imm.
Decode

ImmOp

[rs1]

[rs2]

31:7

immControl

11:7

MemWriteALUControlRegWrite

01
I-type

lw

Instr.

+

Data
Memory

A RD

WD

WE

GPR
Set

A1 RD1

A2 RD2

A3

WD3

WE3

ReadDataALUOut

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 27 / 59

Single-cycle CPU — implementation of instruction sw

sw rs2, imm11:0(rs1) Mem[[rs1] + imm11:0] ← [rs2];
rs1 = base address register, imm = offset, rs2 = source register.
31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

Instr.
Memory

A RD
19:15

24:20
SrcA

SrcB

ALUOut

4

PC

+

ALU

6

WriteData

PCn

Imm.
Decode

ImmOp

[rs1]

[rs2]

31:7

immControl

11:7

MemWriteALUControlRegWrite

10
S-type

sw

Instr.

+

Data
Memory

A RD

WD

WE

GPR
Set

A1 RD1

A2 RD2

A3

WD3

WE3

ReadDataALUOut

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 28 / 59

Single-cycle CPU — implementation of instruction add

add rd, rs1, rs2 rd ← [rs1] + [rs2];
rs1, rs2 = source reg., rd = destination reg., funct7 = add operation
31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type

0
1

GPR
Set

A1 RD1

A2 RD2

A3

WD3

WE3

Instr.
Memory

A RD
19:15

24:20
SrcA

SrcB

ALUOut

4

PC

+

ALU Data
Memory

A RD

WD

WE

1
0

7

resWriteData

PCn

Imm.
Decode

ImmOp

[rs1]

[rs2]

31:7

immControl

11:7

MemToRegMemWriteALUControl

ALUSrc

RegWrite

01 0

X

add

0

Instr.

+

ReadDataALUOut

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 29 / 59

Single-cycle CPU — impl. of instr. sub, and, or, slt

The only difference is in the ALU operation selection (ALUcontrol). The data
path is the same as for the add instruction.

0
1

GPR
Set

A1 RD1

A2 RD2

A3

WD3

WE3

Instr.
Memory

A RD
19:15

24:20
SrcA

SrcB

ALUOut

4

PC

+

ALU Data
Memory

A RD

WD

WE

1
0

8

resWriteData

PCn

Imm.
Decode

ImmOp

[rs1]

[rs2]

31:7

immControl

11:7

MemToRegMemWriteALUControl

ALUSrc

RegWrite

01 0

X

Sub, and,

or, slt

0

Instr.

−, , ,

ReadDataALUOut

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 30 / 59

Single-cycle CPU — implementation of instruction addi

addi rd, rs1, imm11:0 rd ← [rs1] + imm11:0;
31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode I-type
Instruction addi is of type I, similarly as lw. The data path therefore already
exists. The control path must be updated.

0
1

GPR
Set

A1 RD1

A2 RD2

A3

WD3

WE3

Instr.
Memory

A RD
19:15

24:20
SrcA

SrcB

ALUOut

4

PC

+

ALU Data
Memory

A RD

WD

WE

1
0

9

resWriteData

PCn

Imm.
Decode

ImmOp

[rs1]

[rs2]

31:7

immControl

11:7

MemToRegMemWriteALUControl

ALUSrc

RegWrite

01 0

I-type

addi

+

1

Instr.

ReadDataALUOut

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 31 / 59

Single-cycle CPU — implementation of instruction beq
beq rs1, rs2, imm12:1 if [rs1] == [rs2] go to [PC]+{imm12:1,’0’};

else go to [PC]+4;
Here, {imm12:1,’0’} represents the PC-relative offset. The reason why immediate operand is
zero-padded with only one bit is that in compressed format (e.g. RV32IC) the instruction length
can be 2 Bytes only.
31 25 24 20 19 15 14 12 11 7 6 0
imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type

0
1

GPR
Set

A1 RD1

A2 RD2

A3

WD3

WE3

Instr.
Memory

A RD
19:15

24:20
SrcA

SrcB

ALUOut

4

PC

+

ALU Data
Memory

A RD

WD

WE

1
0

10

Zero

resWriteData

1
0

PCn

Imm.
Decode

ImmOp

[rs1]

[rs2]

31:7

immControl

+

11:7

MemToRegMemWriteALUControl

ALUSrc

RegWrite

BranchBeq

BranchOutcome
00 X

1

B-type

beq

--

0

Instr.

BranchTarget

ReadDataALUOut

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 32 / 59

Single-cycle CPU — implementation of instruction jal

jal rd, imm20:1 rd ← [PC]+4; go to [PC]+{imm20:1,’0’};
Here, again {imm20:1,’0’} represents the PC-relative offset.
31 12 11 7 6 0

imm[20|10:1|11|19:12] rd opcode J-type

0
1

GPR
Set

A1 RD1

A2 RD2

A3

WD3

WE3

Instr.
Memory

A RD
19:15

24:20
SrcA

SrcB

ALUOut

4

PC

+

ALU Data
Memory

A RD

WD

WE

1
0

11

Zero

resWriteData

1
0

PCn

0
1

PCPlus4

Imm.
Decode

ImmOp

[rs1]

[rs2]

31:7

immControl

+
BranchTarget

11:7

MemToRegMemWriteALUControl

ALUSrc

RegWrite

BranchJal
BranchBeq

BranchOutcome
01 0

0

J-type

1

1

Jal

X

X

Instr.

BranchJal

ReadDataALUOut

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 33 / 59

Single-cycle CPU — implementation of instruction jalr
jalr rd, rs1, imm11:0 rd ← [PC]+4; go to [rs1]+imm11:0;

31 20 19 15 14 12 11 7 6 0
imm[11:0] rs1 funct3 rd opcode I-type

0
1

GPR
Set

A1 RD1

A2 RD2

A3

WD3

WE3

Instr.
Memory

A RD
19:15

24:20
SrcA

SrcB

ALUOut

4

PC

+

ALU Data
Memory

A RD

WD

WE

1
0

12

Zero

resWriteData

1
0

PCn

0
1

PCPlus4

Imm.
Decode

ImmOp

[rs1]

[rs2]

31:7 1
0

immControl

+

11:7

MemToRegMemWriteALUControl

ALUSrc

RegWrite

BranchJal

BranchJalr

BranchBeq

BranchJalr BranchJalr

BranchOutcome
+ 01

1

0

0

1

I-type

0

1 1

Jalr

Instr.

BranchJalB
ra

n
ch

T
ar

g
et

0

ReadDataALUOut

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 34 / 59

Why are jal and jalr so important?
The instructions jal and jalr include the functionality of unconditional jump
instructions: j (jump) and jr (jump register), and the return from the
subroutine: ret (return). From j, jr and ret the following semantics is required:
Syntax Semantics
j imm20:1 go to [PC]+{imm20:1,’0’};
jr rs1 go to [rs1];
ret go to [x1];

In fact, this is already implemented.
Syntax Implementation Semantics
j imm20:1 jal x0,imm20:1 x0 ← [PC]+4; go to [PC]+{imm20:1,’0’};
jr rs1 jalr x0,rs1,0 x0 ← [PC]+4; go to [rs1]+0;
ret jalr x0,x1,0 x0 ← [PC]+4; go to [x1]+0;

Subroutine call according to RISC-V calling convention is jal x1,imm20:1,
see Slide 9. Therefore, implementation of ret expects that x1 contains the
return address.
Another possibility for j is beq: j imm12:1 = beq x0,x0,imm12:1.
Thus, there is no need to implement j, jr and ret in our microarchitecture.

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 35 / 59

Clock frequency of a single-cycle microarchitecture

What maximal possible clock frequency can we have?
We need to determine what is the latency on the critical path.
We need to analyze all instructions.

0
1

GPR
Set

A1 RD1

A2 RD2

A3

WD3

WE3

Instr.
Memory

A RD
19:15

24:20
SrcA

SrcB

ALUOut

4

PC

+

ALU Data
Memory

A RD

WD

WE

1
0

13

Zero

resWriteData

1
0

PCn

0
1

PCPlus4

Imm.
Decode

ImmOp

[rs1]

[rs2]

31:7 1
0

immControl

+

11:7

MemToRegMemWriteALUControl

ALUSrc

RegWrite

BranchJal

BranchJalr

BranchBeq

BranchJalr BranchJalr

BranchOutcome

datapath

Instr.

BranchJalB
ra

n
ch

T
ar

g
et

ReadDataALUOut

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 36 / 59

Single-cycle CPU – performance: IPS = IC/TCLK = IPC ∗ fCLK

The critical (longest) path is for instruction lw.
Latency on the critical path is (red color in the scheme):
TCLK = tPC + tMem + tGPRread + tMux + tALU + tMem + tMux + tGPRsetup

0
1

GPR
Set

A1 RD1

A2 RD2

A3

WD3

WE3

Instr.
Memory

A RD
19:15

24:20
SrcA

SrcB

ALUOut

4

PC

+

ALU Data
Memory

A RD

WD

WE

1
0

14

Zero

resWriteData

1
0

PCn

0
1

PCPlus4

Imm.
Decode

ImmOp

[rs1]

[rs2]

31:7 1
0

immControl

+

11:7

MemToRegMemWriteALUControl

ALUSrc

RegWrite

BranchJal

BranchJalr

BranchBeq

BranchJalr BranchJalr BranchJal

BranchOutcome

Krit. cesta

Instr.

B
ra

n
ch

T
ar

g
et

ReadDataALUOut

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 37 / 59

Single-cycle CPU – performance: IPS = IC/TCLK = IPC ∗ fCLK

TCLK = tPC + tMem + tGPRread + tMux + tALU + tMem + tMux + tGPRsetup.
Let’s consider the following parameters:

tPC = 0.3 ns
tMem = 20 ns
tGPRread = 1.5 ns
tALU = 2 ns
tMux = 0.1 ns
tGPRsetup = 0.1 ns

Then TCLK = 44 ns and therefore fCLKmax = 22.7 MHz
and IPS = IPC ∗ fCLK = 22 700 000 IPS = 22.7 MIPS.
Note: tGPRsetup is the setup time needed before the rising edge of the clock. The
factual write to a register overlaps with the beginning of the very next instruction.
This overlapping instruction can read this newly written value without conflicts
(after tGPRread , the correct value is guaranteed).

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 38 / 59

Recap

We have designed the data paths for instruction processing.
Now we have to build the controlling part of the processor integrating all the
control signals.

0
1

GPR
Set

A1 RD1

A2 RD2

A3

WD3

WE3

Instr.
Memory

A RD
19:15

24:20
SrcA

SrcB

ALUOut

4

PC

+

ALU Data
Memory

A RD

WD

WE

1
0

13

Zero

resWriteData

1
0

PCn

0
1

PCPlus4

Imm.
Decode

ImmOp

[rs1]

[rs2]

31:7 1
0

immControl

+

11:7

MemToRegMemWriteALUControl

ALUSrc

RegWrite

BranchJal

BranchJalr

BranchBeq

BranchJalr BranchJalr

BranchOutcome

datapath

Instr.

BranchJalB
ra

n
ch

T
ar

g
et

ReadDataALUOut

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 39 / 59

Design of a Control Unit
A control unit (CU) (yellow box) generates control signals required for
processing the current instruction.

0
1

GPR
Set

A1 RD1

A2 RD2

A3

WD3

WE3

Instr.
Memory

A RD
19:15

24:20
SrcA

SrcB

ALUOut

4

PC

+

ALU

Control Unit

BranchJal

BranchBeq

RegWrite
BranchJalr

MemToReg

MemWrite
ALUControl

ALUSrc

Data
Memory

A RD

WD

WE

1
0

15

Zero

resWriteData

1
0

PCn

ALUOut

0
1

PCPlus4

Imm.
Decode

ImmOp

[rs1]

[rs2]

31:7 1
0

immControl

+

BranchOutcome

BranchJalx

11:7

Instr.

B
ra

n
ch

T
ar

g
et

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 40 / 59

Encoding of picoRISC-V instructions I

opcode Meaning For our picoRISC-V
0110011 R-type (see funct7 and funct3) add, sub, slt, or, and
0010011 ALU-imm (see funct3) addi
0000011 Memory load (see funct3) lw
0100011 Memory store (see funct3) sw
1100011 Branch (see funct3) beq
1101111 jal jal
1100111 jalr jalr

funtc7 funtc3 Instruction
0000000 000 add
0100000 000 sub
0000000 010 slt
0000000 110 or
0000000 111 and

Slide 19

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 41 / 59

Encoding of picoRISC-V instructions II

31 27 26 2524 20 19 15 14 12 11 7 6 0
funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type
imm[31:12] rd opcode U-type

imm[20|10:1|11|19:12] rd opcode J-type

31 27 26 2524 20 19 15 14 12 11 7 6 0
imm[11:0] rs1 010 rd 0000011 lw (I)

imm[11:5] rs2 rs1 010 imm[4:0] 0100011 sw (S)
0000000 rs2 rs1 000 rd 0110011 add (R)
0100000 rs2 rs1 000 rd 0110011 sub (R)
0000000 rs2 rs1 010 rd 0110011 slt (R)
0000000 rs2 rs1 110 rd 0110011 or (R)
0000000 rs2 rs1 111 rd 0110011 and (R)

imm[11:0] rs1 000 rd 0010011 addi (I)
imm[12|10:5] rs2 rs1 000 imm[4:1|11] 1100011 beq (B)

imm[20|10:1|11|19:12] rd 1101111 jal (J)
imm[11:0] rs1 000 rd 1100111 jalr (I)

Slides 13, 20

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 42 / 59

Single-cycle CPU – CU design
Control signal values are defined in the following table:

Instruction Opcode Funct3 Funct7 AL
U
Sr
c

AL
U
Co

nt
ro
l

M
em

W
rit
e

M
em

To
Re

g

Re
gW

rit
e

Br
an
ch
Be

q

Br
an
ch
Ja
l

Br
an
ch
Ja
lr

Im
m
Co

nt
ro
l

lw 0000011 010 don’t care
sw 0100011 010 don’t care
add 0110011 000 0000000
sub 0110011 000 0100000
slt 0110011 010 0000000 Control signal values are
or 0110011 110 0000000 given on the previous slides.
and 0110011 111 0000000 (This is left to students as an exercise.)
andi 0010011 000 don’t care
beq 1100011 000 don’t care
jal 1101111 don’t care don’t care
jalr 1100111 000 don’t care

Therefore, the single-cycle picoRISC-V CU can be implemented as a
combinational circuit.

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 43 / 59

We are done! Our picoRISC-V single-cycle microarchitecture

0
1

GPR
Set

A1 RD1

A2 RD2

A3

WD3

WE3

Instr.
Memory

A RD
19:15

24:20
SrcA

SrcB

ALUOut

4

PC

+

ALU

Control Unit

BranchJal

BranchBeq

RegWrite
BranchJalr

MemToReg

MemWrite
ALUControl

ALUSrc

Data
Memory

A RD

WD

WE

1
0

16

Zero

resWriteData

1
0

PCn

ALUOut

0
1

PCPlus4

Imm.
Decode

ImmOp

[rs1]

[rs2]

31:7 1
0

immControl

+

B
ra

n
ch

T
ar

g
et

BranchOutcome

BranchJalx

11:7

Instr.

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 44 / 59

Single-cycle CPU – a generalization
The main task of this lecture was a design of simple microarchitecture
consisting of a CPU and separated instruction and data memory.
In our design, the CPU has independent data buses for both memories.

Data
Memory

Instr.
Memory

A RD A RD

WD

WE

Datapath

Instr
PC

PC

ALUOut
RD2

CPU

Control unit

Zero

MemWriteCtrls

MemWrite
Address
WriteData

ReadData

Data Memory Bus

Addr

Instruction
Memory Bus

In general, a memory bus consists of address, data, and control wires.
To make our design simple, there are two buses to data memory: 32-bit WriteData and
32-bit ReadData. Since in our design, concurrent memory load and store operations
cannot be executed, it would be better to use full-duplex memory bus with transfer
direction control – see BIE-SAP Lecture 10.

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 45 / 59

Generic task of a CU

The task of a CU is to control other units.
I It coordinates their activities and data exchanges between them.
I It controls fetching of the instructions from the (main/instruction)

memory.
I It ensures their decoding and it sets gates, control and data paths to

such a state that instructions (can be) are executed.
Generally, the task of a CU is to generate sequences of control signals
for computer subsystems in such an order that prescribed operations
(arithmetic, data exchange, instruction flow control, etc.) are
executed.

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 46 / 59

The design of a CU

A CU is typically a sequential circuit.
A CU generates control signals at appropriate times:

I Memory Select, Write Enable (WE), clock gating.
I Data path switching (= multiplexer control).
I Determination of ALU operations.

It reacts to the status signals (CU inputs):
I In our case, CU reacts only to the Zero ALU output signal.
I In real CPUs, many more conditions can influence instruction cycle –

interrupts, exceptions, etc.

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 47 / 59

Possible hardware implementations of CU
Hardwired CU:

I combinational logic (this was our case),
I sequential logic, i.e., finite state machine (Mealy, Moore, . . .).

Microprogrammed CU:
I A microinstruction is a group of elementary operations that control

data flow and sequencing of instruction execution in a processor at the
level of simplest operations, such as moving the content of a register to
ALU, etc.

I A sequence of microinstructions is called a microprogram.
I Instructions in ISA (add, sub, lw, jal, . . .) are implemented as

microprograms. That is, one ISA instruction can be implemented by
one or several microinstructions.

I A microprogram is stored in a control memory of CU.
I The opcode of an instruction determines the address of the

instruction’s microprogram.
I Advantages: flexibility (new microprogram = "new" microprocessor).
I Disadvantages: complex and not convenient for pipelined
processors, since individual pipeline stages process different
instructions and hazards arise.

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 48 / 59

Communication with input/output (I/O) devices

The idea: To communicate with I/O peripheral devices (keyboards, monitors,
printers), we can use the same interface as with main memory (instructions lw
and sw). This is called memory mapped I/O.

48

232 B

Address space

accesible by
lw and sw

... ...

232 B

Memory mapped

I/O address space

Address space for

main memory

Address space

accesible by
lw and sw

4 B 4 B

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 49 / 59

Implementation of memory mapped I/O
The Address Decoder monitors the address on the Data Memory Bus and signal
MemWrite. If it detects a match with some I/O address, it takes the appropriate
action.

Data
Memory

Instr.
Memory

A RD A RD

WD

WE

Datapath

Instruction
PC

PC

ALUOut
RD2

CPU

Control unit

Zero

MemWriteCtrls

MemWrite
Address
WriteData

ReadData

Data Memory Bus

Addr

Instruction
Memory Bus

I/O
Device 2

I/O
Device 1

Address Decoder

EN

EN

00

01

10

WE1WE2
WE3

Sel

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 50 / 59

Speech Synthesizer Example

In English, there are about 60 elementary spoken sounds (called allophones)
from which all individual words of spoken English consist.
The SP0256 chip is able to generate all these allophones, it contains
addressable encoded allophones.
The task: Write a SP0256 driver in our picoRISC-V ISA that is able to
read an array of 6-bit codes (= SP0256 addresses) of 5 allophones starting
from main memory address 0x00000100 and send these codes sequentially
to a SP0256 chip so that the chip will consecutively generate these sounds
using a loudspeaker attached to its loudspeaker DigitalOut pins.

Štepanovský (CTU in Prague) Návrh jednocyklového RISC procesoru BI-APS, 2019 41

http://little-scale.blogspot.com/2009/02/sp0256-
al2-creative-commons-sample-pack.html

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 51 / 59

Speech Synthesizer Example: SP0256
Pins A6:1 receive a 6-bit allophone code from the CPU.
The allophone sound digital signal is sent to the DigitalOut pin.
SBY is an output status pin:

I If SBY = 1, SP0256 is standing by and is ready to receive a new
allophone code. Otherwise no input is accepted.

Pin Address Load ALD is an input control pin:
I On the falling edge of ALD, SP0256 reads a new allophone code

supplied to A6:1.

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 52 / 59

Speech Synthesizer Example: Memory Mapping of the Chip

Assume the following memory mapping:
I Port A6:1 to the address 0xFFFF FF00,
I ALD to the address 0xFFFF FF04,
I SBY to the address 0xFFFF FF08.

52

...

Memory

mapped I/O

...

0xFFFF FF08

0xFFFF FF04

0xFFFF FF00

0x0000 0110

0x0000 010C

0x0000 0108

0x0000 0104

0x0000 0100

SBY

ALD#

A6:1

Allophone codes

(word to speak)

Address space

accesible by
lw and sw

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 53 / 59

Speech Synthesizer Example: picoRISC-V + SP0256

Lower 6 bits of WriteData bus are connected to pins A6:1.
The lsb of WriteData bus is connected to pin ALD.
Similarly, pin SBY is connected to the ReadData lsb.

Data

Memory

A RD

WD

WE

Datapath

PC

PC

ALUOut
RD2

CPU

Control unit

Zero

MemWriteCtrls

MemWrite
Address
WriteData

ReadData

Data Memory Bus

SP0256

Address Decoder

EN

EN

00

01

WE1WE2
WE3

Sel

A6:1 SBY

ALD
Gnd

[31:1]

Instr.

Memory

A RD
Instruction

Addr

Instruction

Memory Bus

[0]

[5:0]

[0]

[31:0]

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 54 / 59

Speech Synthesizer Example: Driver

1. Set ALD to 1.
2. Wait until

SP0256 sets SBY
to 1 (indication
of its readiness).

3. Write a 6-bit
allophone code
to pins A6:1.

4. Set ALD to 0
(command to
SP0256 to start
to generate the
sound).

init:
addi x1,x0,1 // [x1] = 1 (value to write to ALD#)
addi x2,x0,20 // [x2] = array size *4 (20 bytes)
addi x3,x0,0x100 // [x3] = array base address
addi x4,x0,0 // [x4] = 0 (array index)

start:
sw x1,0xF04(x0) // ALD#=1

loop:
lw x5,0xF08(x0) // [x5] = SBY (monitor the state)
beq x5,x0,loop // loop while SBY == 0
add x6,x3,x4 // [x6] = address of an allophone
lw x7,0(x6) // [x7] = allophone
sw x7,0xF00(x0) // [A6:1] = allophone
sw x0,0xF04(x0) // [ALD#] = 0 (to initiate speech)
addi x4,x4,4 // increment array index
beq x4,x2,done // are all allophones done?
beq x0,x0,start // if not, repeat

done: // otherwise stop
Note that the CPU checks whether SP0256 is ready by periodic checking of its
SBY output. This is called polling or busy waiting. It would be better to link SBY
to a CPU interrupt system to enable some useful computation in the meantime.

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 55 / 59

Communication with I/O in general
Basically, there are two approaches to CPU-I/O communication:

Memory-mapped I/O:
I A part of main memory address space is dedicated to the I/O devices.

R/W from/to these addresses are interpreted as commands or data
transfers from/to these devices. The memory system ignores these
operations since it knows the I/O address range. The I/O driver
however detects these ops and reacts accordingly.

I In our case study, a centralized approach was used when an address
decoder controls to the main memory and all I/O devices.

I In practice, an autonomous approach is common where each I/O
device has its own special registers with device addresses, initialized
during the boot process. Each I/O snoops its own addresses.

Port-mapped I/O:
I A dedicated separated I/O address space is used.
I Special I/O instructions are needed (e.g., in and out in x86) to

manage this space.

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 56 / 59

Partitioning of physical memory address space I
An example of partitioning of physical memory address space for SoC (System on
Chip) FU740 containing a 64-bit 5-core RISC-V CPU 3:

0x00 0000 0000

Peripheral (SPI)
0x00 2000 0000

RISC-V (FU740 SoC)
0xFF FFFF FFFF

DRAM
(up to 64GB)

CPU
8x1GB DRAM

PCIe Switch

PCIe x16

M.2 (PCIe)

USB

USB hub

32MB QSPI flash

RJ45

micro USB

micro SD

PCIe to USB bridge

0x00 8000 0000

Peripheral (PCIe)

Core-Local Interruptor

L2 cache controller

L2 LIM (Loosely-

Integrated Memory)0x00 0800 0000

Platform-Level Interrupt

Controller (PLIC)

Peripheral (DMA,

UART, I2C, QSPI, …)

0x00 0C00 0000

5cm

Memory Controler,

PCIe management 0x00 100B 0000

31xRV64IMAC, 4xRV64IMAFDC
Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 57 / 59

Partitioning of physical memory address space II
Partitioning of physical memory address space differs among architectures and
vendors:

Štepanovský (CTU in Prague) Návrh jednocyklového RISC procesoru BI-APS, 2019 41

0x00000000

Data RAM
(Stack, heap, data; up to

128 KB)

0x1D000000

Program Flash
(up to 512 KB)

Peripheral SFRs
(up to 1MB)

0x1F800000

Boot Flash
0x1FC00000

Device Configuration Regs0x1FC02FF0

MIPS32 (PIC32) ARM (Cortex-M3)

Code (Program)
(up to 512 MB)

SRAM (Data)
(Stack, heap, data; up to

512 MB)

Peripheral
(up to 512MB)

0x20000000

0x00000000

0x40000000

External RAM
(off-chip memory for

data, up to 1GB)

External Device
(such as SD card, up to

1GB)

System / Vendor
specific

0x60000000

0xA0000000

0xE0000000

x86

I/O space
accesible via in and out

instructions

DOS Area
(up to 640 KB)

VGA Memory

16-bit devices, PCI,
expansion ROMs, BIOS

Extended Memory

Peripheral (32-bit
memory mapped

devices), BIOS

0x00000000

0x000A0000

0x000C0000

0x00100000

0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF

3 GB

1 GB

Note: x86 has two
address spaces: memory
space and I/O space

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 58 / 59

References
(1) J. L. Hennessy, D. A. Patterson: Computer Architecture: A Quantitative

Approach. Morgan Kaufmann, 5th Edition. 2011.
(2) D. Paterson, J. Hennessy: Computer Organization and Design, The

HW/SW Interface. Elsevier, ISBN: 978-0-12-370606-5
(3) The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document

Version 20191213, RISC-V Foundation, December 2019.
(4) D. Harris, S. Harris: Digital Design and Computer Architecture, 2nd Edition.

Morgan Kaufmann.
(5) J. Franco: What is Microprogramming and Why Should We Know About it?

http://gauss.ececs.uc.edu/Courses/c4029/exams/Spring2013/Review/microcode.pdf
(6) Cortex-M3 Technical Reference Manual:

https://developer.arm.com/documentation/ddi0337/e/memory-map/about-
the-memory-map

(7) PIC32 Family Reference Manual: Section 3. Memory Organization.
http://ww1.microchip.com/downloads/en/devicedoc/60001115h.pdf

(8) SiFive U74 Core Complex Manual, 21G2.01.00.
(9) SiFive FU740-C000 Manual, v1p2.

Štepanovský, Tvrdík (FIT CTU in Prague) Design of a single-cycle RISC µarchitecture. BIE-APS, 2022 59 / 59

